skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tran, Hoang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 6, 2026
  2. Free, publicly-accessible full text available May 6, 2026
  3. Free, publicly-accessible full text available March 1, 2026
  4. Free, publicly-accessible full text available May 1, 2026
  5. This paper extends the star set reachability approach to verify the robustness of feed-forward neural networks (FNNs) with sigmoidal activation functions such as Sigmoid and TanH. The main drawbacks of the star set approach in Sigmoid/TanH FNN verification are scalability, feasibility, and optimality issues in some cases due to the linear programming solver usage. We overcome this challenge by proposing a relaxed star (RStar) with symbolic intervals, which allows the usage of the back-substitution technique in DeepPoly to find bounds when overapproximating activation functions while maintaining the valuable features of a star set. RStar can overapproximate a sigmoidal activation function using four linear constraints (RStar4) or two linear constraints (RStar2), or only the output bounds (RStar0). We implement our RStar reachability algorithms in NNV and compare them to DeepPoly via robustness verification of image classification DNNs benchmarks. The experimental results show that the original star approach (i.e., no relaxation) is the least conservative of all methods yet the slowest. RStar4 is computationally much faster than the original star method and is the second least conservative approach. It certifies up to 40% more images against adversarial attacks than DeepPoly and on average 51 times faster than the star set. Last but not least, RStar0 is the most conservative method, which could only verify two cases for the CIFAR10 small Sigmoid network,δ= 0.014. However, it is the fastest method that can verify neural networks up to 3528 times faster than the star set and up to 46 times faster than DeepPoly in our evaluation. 
    more » « less